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There are few data on the molecular epidemiology of cryptococcosis in China. Here we investigated the
species distribution, molecular types and antifungal susceptibilities of 312 Cryptococcus neoformans
species complex isolates from ten hospitals over 5 years. Isolates were identified by internal transcribed
spacer (ITS) sequencing and by two matrix-assisted laser desorptioneionization time-of-flight mass
spectrometry (MALDI-TOF MS) systems. Multilocus sequence typing (MLST) was used to verify species/
variety and to designate molecular types. Susceptibility to six antifungal drugs was determined by the
Sensititre YeastOne™ method. Cryptococcus neoformans was the predominant species (305/312 isolates
(97.8%), all were ITS type 1, serotype A), of which 89.2% (272/305) were C. neoformans var. grubii MLST
sequence type (ST) 5 and 6.2% (19/305) were ST31. Other C. neoformans var. grubii STs were rare but
included six novel STs. Only two strains were C. neoformans var. neoformans (both serotype AD). Cryp-
tococcus gattiiwas uncommon (n ¼ 7, four ITS types) and comprised five MLST STs including one novel ST.
For C. neoformans var. grubii, the proportion of isolates with non-wild-type MICs to fluconazole signifi-
cantly rose in the fourth study year (from 0% (0/56 isolates) in the first year to 23.9% (17/71) in the fourth
year), including five isolates with fluconazole MICs of �32 mg/L. The study has provided useful data on
the species epidemiology and their genetic diversity and antifungal susceptibility. The proportional in-
crease in isolates with non-wild-type MICs to fluconazole is noted. X. Fan, CMI 2016;22:887.e1e887.e9
© 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All
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Introduction

The genus Cryptococcus comprises over 70 species and is
responsible for life-threatening infections, particularly meningo-
encephalitis, in both immunocompromised and immunocompe-
tent patients [1]. The Cryptococcus neoformans species complex,
C. neoformans (including its varieties, C. var. neoformans and
C. neoformans var. grubii) and Cryptococcus gattii, account for most
cases of infections [2e4]. Other species such as Cryptococcus lau-
rentii are rare [5,6].

Effective management of cryptococcal infections relies on
appropriate antifungal therapy. The Infectious Diseases Society of
America recommends amphotericin B and 5-flucytosine as the
preferred agents for the initial or induction therapy, whereas the
azoles (especially fluconazole) are generally used in the consoli-
dation and maintenance phases of therapy or as primary prophy-
laxis [7]. However, in resource limited settings, azoles are often
used as initial therapy [8]. Notably, antifungal susceptibility,
particularly to fluconazole, has been noted to vary not only ac-
cording to species but also with molecular type (genotype) and
geographic region [3,9,10]. Therefore, knowledge of local epide-
miology patterns of disease, including the molecular type and
antifungal susceptibilities of the causative Cryptococcus species is
essential to guide clinical management as well as population ge-
netic studies [2,11].

Delineation of molecular types of C. neoformans and C. gattiimay
be performed by a number of techniques including sequencing of
the rDNA internal transcribed spacer (ITS), PCR-fingerprinting,
amplified fragment length polymorphism, restriction fragment
length polymorphism and multilocus sequence typing (MLST)
[2,4,12]. Of these, MLST lends itself as a highly discriminatory tool
that allows objective comparison of results between centres. One
such standardized MLST scheme is recommended by the Interna-
tional Society of Human and Animal Mycoses [12] as the preferred
method for cryptococcal strain typing and there is consensus to use
the nomenclature VNI to VNIV and VGI to VGIV for assigning ge-
notypes of C. neoformans and C. gattii, respectively [12].

In Asia, C. neoformans genotype VNI (C. neoformans var. grubii,
serotype A, ITS genotype ITS1) is reported to be the commonest
genotype (81.0%) followed by C. gattii genotype VGI (serotype B/C,
ITS genotypes ITS3/ITS7) (13.2%), with other genotypes being rare
[2]. However, there is a higher prevalence of C. gattii VGI in India
(29.3%) [2]. Little is known about the molecular epidemiology of
cryptococcosis in China where previous studies were performed
decades ago, or were restricted to a single/small number of in-
stitutions [13e16]. Although the first multicentre survey of invasive
yeast infections in China (China Hospital Invasive Fungal Surveil-
lance Net (CHIF-NET)) provided some epidemiological data for
cryptococcosis, the molecular epidemiological aspects were not
detailed [17,18]. Further, the programme determined drug suscep-
tibility only to fluconazole and voriconazole. In the present study,
we provide a contemporary snap shot of the species distribution,
and investigate the genetic diversity and in vitro antifungal sus-
ceptibility of C. neoformans species complex isolates causing cryp-
tococcosis from ten hospitals in China during a 5-year period.
Material and methods

Ethics statement

The study was approved by the Human Research Ethics Com-
mittee of Peking Union Medical College Hospital (S-263). Written
informed consents were obtained from all patients, which included
permission to study patient isolates for scientific research.
Isolates

Cryptococcus isolates were collected consecutively from unique
patients (one strain per patient) from the CHIF-NET study, a
laboratory-based, national multicentre surveillance programme
during a 5-year period from August 2009 to July 2014 [17]. If pa-
tients had two isolates of the same organism cultured during the
surveillance, only the first isolate cultured was studied. A total of
312 isolates were collected from patients in the ten study hospitals
(Fig. 1), and no Cryptococcus isolates were excluded from the study
because of patient decline for participation. Isolates were initially
identified at each study centre by routine mycological methods
(Vitek 2 YST or API20C AUX; both bioM�erieux, Marcy l’Etoile,
France) and then forwarded to a central reference laboratory
(Department of Clinical Laboratory, Peking Union Medical College
Hospital) for species identification, molecular typing and antifungal
susceptibility testing. Species identification was performed by
sequencing of the ITS region and by matrix-assisted laser desorp-
tioneionization time-of-flight mass spectrometry (MALDI-TOF MS)
[17,19]. The species identification obtained at the reference labo-
ratory was taken as the definitive identification.
Identification of Cryptococcus species and variety

DNA extraction and amplification of the ITS region was per-
formed as previously described using the primer pair ITS1 and ITS4
[17]. The PCR products were sequenced in both directions using the
DNA analyser ABI 3730XL system (Applied Biosystems, Foster City,
CA).

The obtained ITS sequences of Cryptococcus isolates were
compared against those contained in the Centraalbureau voor
Schimmelcultures (CBS) Fungal Biodiversity Centre database by
using BIOLOMICSNET software (http://www.cbs.knaw.nl/collections/
BioloMICSSequences.aspx). Further, ITS types for all isolates were
assigned as previously described [4].
MLST, serotype and mating type analysis

MLST analysis was performed to delineate the subtype or ge-
notype of the isolates. Briefly, seven housekeeping gene loci (CAP59,
GPD1, IGS1, LAC1, PLB1, SOD1 and URA5), were studied according to
the protocol of Meyer et al. [12]. The PCR products were sequenced
in both directions using the DNA analyser ABI 3730XL system
(Applied Biosystems). Nucleotide sequences were analysed manu-
ally to ensure high-quality sequences, then queried against the
online MLST database (http://mlst.mycologylab.org) to assign al-
leles for each locus. The sequence type (ST) was then defined ac-
cording to isolates' allelic profiles. Molecular types (i.e. VNI to VNIV
for C. neoformans and VGI to VGIV for C. gattii) were assigned ac-
cording to isolates' STs and were queried against the online MLST
database (http://mlst.mycologylab.org). Phylogenetic analysis
depicting the genetic relationships between isolates based onMLST
loci alleles were carried out with the categorical analysis method,
and minimum spanning tree analysis based on strains' ST profiles
were performed using BIONUMERICS software (version 7.5, Applied
Maths, Kortrijk, Belgium). Novel allele types in each novel ST were
confirmed twice by sequencing in both directions and have been
deposited in the MLST database.

Serotyping of the isolates was performed as described previ-
ously using serotype A (JOHE2596/JOHE3241) and serotype D
(JOHE2596/JOHE3240) specific primer sets [20], and mating type
determined as described by Li et al. [21].

http://www.cbs.knaw.nl/collections/BioloMICSSequences.aspx
http://www.cbs.knaw.nl/collections/BioloMICSSequences.aspx
http://mlst.mycologylab.org
http://mlst.mycologylab.org


Fig. 1. Geographic distribution of 10 hospitals participated in the present study, percentage for Cryptococcus neoformans var. grubii isolates of different sequence types (STs), and for
fluconazole non-wild-type (non-WT, MIC >8 mg/L) Cryptococcus neoformans var. grubii isolates in each hospital. Hospital names and abbreviations: PU, Peking Union Medical
College Hospital; TJ, Tongji Hospital; GZ, The First Affiliated Hospital of Sun Yat-Sen University; H1, The First Affiliated Hospital of Harbin Medical University; BD, Peking University
First Hospital; HX, West China Hospital; TZ, Tianjin Medical University General Hospital; Z1, The First Hospital of China Medical University; LR, The People's Hospital of Liaoning
Province; H4, The Fourth Affiliated Hospital of Harbin Medical University.
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Antifungal drug susceptibility testing

Susceptibility to six antifungal drugs (fluconazole, voriconazole,
itraconazole, posaconazole, amphotericin B and 5-flucytosine) was
investigated using the Sensititre YeastOne™ YO10method (Thermo
Scientific, Cleveland, OH, USA). Briefly, isolates were sub-cultured
onto Sabouraud dextrose agar and incubated at 35�C for 48 h. Af-
ter this, 20 mL of 0.5 McFarland yeast suspension was transferred
into 11 mL of inoculum broth and then 100 mL of the inoculated
broth was transferred to each well of the manufacturer's plate.
Plates were incubated at 35�C and the MIC endpoints were read at
72 h. Candida krusei ATCC 6258 and Candida parapsilosis ATCC22019
were used as quality control organisms for each run.

As there are currently no standard clinical breakpoints for
Cryptococcus spp., we used the epidemiological cut-off values as
recommended by previous studies: fluconazole, 8 mg/L; vor-
iconazole, 0.12 mg/L; itraconazole and posaconazole, 0.25 mg/L;
amphotericin B, 1 mg/L; and 5-flucytosine, 8 mg/L [9e11].

Statistical analysis

All statistical analyses were performed using IBM SPSS software
(version 22.0; IBM SPSS Inc., New York, NY, USA). Categorical vari-
ables were compared using the c2 or Fisher's exact test, and
continuous variables by the ManneWhitney U test. A p value of
0.05 was considered significant.

Results

Cryptococcus isolates

A total of 312 C. neoformans species complex among 4191 (7.4%)
yeast isolates (including Candida, Cryptococcus and other yeasts)
were collected over the 5-year period. The proportion of
Cryptococcus among all causative yeast species varied between
hospitals ranging from 0.5% (1/189 in hospital LR) to 19.4% (136/700
in hospital HX); its prevalence over the 5 years was stable ranging
from 6.0% (61/1022 isolates in the fifth year) to 8.5% (73/857 isolates
in the third year) (p 0.183, not significant). Isolates from cerebro-
spinal fluid made up 67.6% (211/312) of isolates followed by blood
(74/312, 23.7%). Isolates cultured from tissue biopsy specimens
(n ¼ 13), abscess (n ¼ 7), ascitic fluid (n ¼ 4), bile (n ¼ 1), bron-
choalveolar lavage fluid (n¼ 1) and bonemarrow (n¼ 1) were rare.

Distribution of Cryptococcus species by ITS sequencing

The ITS sequencing assigned 312 C. neoformans species complex
isolates into six ITS types, including two ITS types from 305
C. neoformans isolates and four from seven C. gattii isolates
(Table 1). Within C. neoformans, 99.3% (303/305) isolates were
C. neoformans var. grubii, and only two strains were C. neoformans
var. neoformans. Molecular serotyping found all C. neoformans var.
grubii to be serotype A, and the two C. neoformans var. neoformans
isolates were serotype AD (Table 1). In addition, 99.3% (303/305)
C. neoformans isolates weremating type a, and 0.7% (2/305) isolates
were mating type a (Table 1). All C. gattii isolates were mating type
a (Table 1).

Among seven C. gattii isolates, six had ITS types delineated
previously, i.e. ITS types 3, 4 and 7 (Table 1) [4]. The remaining
isolate, strain ID no. 12TJ267, exhibited a previously undocumented
ITS type and was called as ‘ITS type SH’ in the present study
(Table 1). Its ITS sequence was 100% identical to a previously re-
ported C. gattii isolate (strain ID no. S8012) [22].

MLST analysis

In general, the results of MLST analysis supported the species
identification and variety of Cryptococcus assigned by ITS



Table 1
Species distribution and molecular epidemiology of 312 Cryptococcus neoformans species complex isolates collected in the present study

Species Serotype Mating type ITS type Multilocus sequence typing Molecular type No. of isolates

ST CAP59 GPD1 IGS1 LAC1 PLB1 SOD1 URA5

C. neoformans 305
var. grubii A a ITS type 1 5 1 3 1 3 2 1 1 VNI 272

A a ITS type 1 31 1 1 10 3 2 1 1 VNI 19
A a ITS type 1 63 7 1 1 18 1 1 1 VNI 2
A a ITS type 1 69 7 5 1 3 3 1 1 VNI 2
A a ITS type 1 6 1 1 1 3 2 1 5 VNI 1
A a ITS type 1 359 1 25 1 5 2 1 1 VNI 1
A a ITS type 1 534a 53 11 84 42 10 61 43 VNI 1
A a ITS type 1 535a 52 3 1 5 2 1 1 VNI 1
A a ITS type 1 536a 1 41 1 5 2 1 1 VNI 1
A a ITS type 1 537a 1 3 1 5 2 1 54 VNI 1
A a ITS type 1 539a 55 3 1 5 2 1 1 VNI 1
A a ITS type 1 538a 54 42 1 5 38 60 55 VNIV 1

var. neoformans AD a/a ITS type 2 N/Ab Hetb 1 60 23 Hetb 1 Hetb VNIII 2
C. gattii 7

ND a ITS type 3 57 16 5 3 5 5 65 12 VGI 3
ND a ITS type 3 51 16 5 3 5 5 32 12 VGI 1
ND a ITS type 4 2a 14 6 3 21 2 58 2 VGII 1
ND a ITS type 7 332 16 51 70 13 13 34 24 VGI 1
ND a ITS type SHc 159 16 14 3 5 5 45 12 VGI 1

ITS, rDNA internal transcribed spacer region; ND, not done; N/A, not applicable; ST, sequence type; Het, heterozygote.
a Novel STs identified in the present study.
b As the two C. neoformans var. neoformans isolates identified in the present study were serotype AD isolates and were heterozygote at gene loci CAP59, PLB1 and URA5, thus

the isolates' ST could not be assigned.
c The ITS type of strain 12TJ267 collected in the present study was not involved in ITS genotype system developed by Katsu et al. [4] But its ITS sequence was 100% identical

to a previously reported C. gattii isolate (strain ID no. S8012) that described by Chen et al. [22] The IGS1, LAC1 gene loci sequences were also 100% identical between strain
12TJ267 and S8012.
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sequencing. Overall, C. neoformans presented a low degree of ge-
netic diversity. Twelve STs were identified among 303
C. neoformans var. grubii isolates, including six that were novel
(Table 2). VNI strains accounted for 302 of the 303 isolates (99.7%),
only one strain of the 303 (0.3%) was VNIV. In addition, 89.8% of
isolates (272/303) were of C. neoformans ST5, and this ST was the
predominant ST in all ten hospitals (Fig. 1). The majority of
C. neoformans var. grubii isolates from cerebrospinal fluid, blood,
and all from other specimen types were ST5 (Table 2). ST31 was the
next most common ST, identified in six of ten hospitals (Fig. 1).
None of the other STs comprisedmore than three isolates, and their
geographic distribution was scattered (Table 1, Fig. 1). Further
combined phylogenetic analysis for 423 C. neoformans var. grubii
isolates from this study (303 isolates) and two previous studies by
Wu et al. (41 isolates) [23] and Dou et al. (79 isolates) [13] in China
based on isolates' MLST locus alleles also illustrated that isolates
belonging to ST5 and its closely related STs of clonal complex (CC) 5
were predominant in China (390/423 isolates, 92.2%), followed by
CC31 isolates (24/423 isolates, 5.7%) (Fig. 2). We could not assign an
ST to the two C. neoformans var. neoformans (molecular type VNIII)
isolates because of heterozygosity at the CAP59, PLB1 and URA5 loci,
but analysis of the other gene loci employed supported its ‘variety’
level (Table 1).

In comparison, C. gattii isolates were more genetically diverse,
with five STs identified among seven isolates. Three of seven
(42.9%) isolates were C. gattii ST57, and one isolate each belonged to
the remaining four MLST STs including a novel ST (Table 1). In
addition, for the ITS type SH, C. gattii isolates 12TJ267, its IGS1, LAC1
gene loci sequences were also 100% identical to that of C. gattii
strain S8012, which further supports its identification results by
analysis of the ITS region (Table 1). Six of the seven (85.7%) C. gattii
isolates were molecular type VGI, and one isolate (14.3%) was VGII
(Table 1, Fig. 3); however, the latter was genetically divergent from
two well-known VGII clones (represented by C. gattii strain R265 of
ST20 for the major clone and strain R272 of ST7 for theminor clone)
responsible for the C. gattii outbreaks in Vancouver (Fig. 3).

Antifungal drug susceptibilities

The susceptibilities to antifungal drugs are summarized in
Table 3. Among 303 C. neoformans var. grubii isolates, the wild-type
(WT) phenotype was seen in 97.7%e100% of isolates for vor-
iconazole, itraconazole, posaconazole, amphotericin B and 5-
flucytosine, and there were no significant trends for MIC50, MIC90
and geometric mean MIC over the 5 years (all the p values >0.5)
(Fig. 4). However, 7.6% (23/303) of isolates were non-wild-type
(non-WT, MIC >8 mg/L) to fluconazole; these isolates were from
six of the ten participating hospitals (Table 1, Fig. 1). The majority of
fluconazole non-WT isolates (21/23, 91.3%) belonged to ST5, and
one isolate each (4.3%) was ST31 and ST69 (Table 2).

In addition, the proportion of isolates that demonstrated non-
WT MICs to fluconazole was significantly higher in the fourth
study year (17/71, 23.9%, see Supplementary material, Table S1)
compared with the first 3 years (0%e2.1%, p <0.001) (Fig. 4). These
isolates were cultured from patients in different hospitals and
medical services and were not clustered together. They included
1.7% (5/303) isolates that were C. neoformans ST5 with fluconazole
MICs of �32 mg/L (Table 2) from three hospitals and which were
identified in the fourth year. In comparison, the two C. neoformans
var. neoformans isolates and seven C. gattii isolates had WT MICs to
all drugs tested except for one C. gattii isolate with a fluconazole
MIC of 16 mg/L (Table 1).

To explore any clinical variables that may have been associated
with the proportional increase in isolates with non-WT MICs to
fluconazole in the fourth year of the study, we reviewed the med-
ical records and drug charts of 11/17 (64.7%) patients infected by
these isolates. For seven patients (7/11, 63.6%), there was no history
of fluconazole receipt within the preceding 30 days or prior to this



Table 2
Distribution of Cryptococcus neoformans var. grubii isolates of different sequence types (STs) in different specimen types, and prevalence of fluconazole non-wild-type (non-WT,
MIC >8 mg/L) and fluconazole highly non-susceptible (MIC �32 mg/L) isolates

Sequence type No. of C. neoformans var. grubii isolates (% of total)

Specimen type Fluconazole susceptibility

Cerebrospinal fluid Blood Other specimen types non-WT MIC �32 mg/L

ST5 181 (89.6) 64 (86.5) 27 (100) 21 (91.3) 5 (100)
ST31 15 (7.4) 4 (5.4) 0 1 (4.3) 0
ST63 1 (0.5) 1 (1.4) 0 0 0
ST69 0 2 (2.7) 0 1 (4.3) 0
ST6 0 1 (1.4) 0 0 0
ST359 0 1 (1.4) 0 0 0
ST534 0 1 (1.4) 0 0 0
ST535 1 (0.5) 0 0 0 0
ST536 1 (0.5) 0 0 0 0
ST537 1 (0.5) 0 0 0 0
ST538 1 (0.5) 0 0 0 0
ST539 1 (0.5) 0 0 0 0
Total 202 (100) 74 (100) 27 (100) 23 (100) 5 (100)
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time. However, the remaining four patients (4/11, 36.4%) had
received fluconazole within the preceding 30 days before diagnosis
of cryptococcosis; the reasons for fluconazole prescriptionwere not
stated, but presumably for empiric therapy of a possible fungal
infection. In comparison, none of the four patients who were
infected by 5-flucytosine non-WT isolates identified in CHIF-
NET13, had previously received 5-flucytosine treatment (see
Supplementary material, Table S1). After the diagnosis of crypto-
coccosis was established, nine of 11 patients received targeted anti-
cryptococcosis therapywith amphotericin B plus 5-flucytocine and/
or fluconazole, and two patients received no antifungal therapy.
Three of 11 (27.3%) patients responded favourably to antifungal
therapy, three (27.3%) patients died, and five patients (45.4%)
Fig. 2. Minimum spanning tree analysis for 423 Cryptococcus neoformans var. grubii isolates f
Dou et al. (79 isolates) [13] in China based on isolates' multilocus sequence typing loci alleles
isolates for each ST. Different colour in circle represents different studies, and grey halo sur
circles indicate the similarity between profiles (bold line, six of seven loci alleles in commo
discharged themselves against medical advice and outcome data
were not available (see Supplementary material, Table S1).

Discussion

Worldwide, C. neoformans and C. gattii are major species causing
cryptococcosis, although the proportion of species- and variety-
specific distribution differs between geographic regions. Our
study, for the first time, provides a description and understanding
of the species epidemiology of cryptococcosis from ten centres in
China over half a decade, more specifically of the genetic diversity
and antifungal susceptibility of a large number of C. neoformans
species complex strains.
rom this study (303 isolates) and two previous studies byWu et al. (41 isolates) [23] and
. Each circle corresponds to a sequence type (ST), and size of circle represents number of
rounding the circles denote STs belong to the same clonal complex. The lines between
n; dashed line, four alleles; dotted line, fewer than three alleles).



Fig. 3. Phylogram indicating the genetic relationships between the Cryptococcus gattii isolates from the present study, two previous studies by Wu et al. [23] and Dou et al. [13],
reference strains of C. gattii genotypes IeIV proposed by Meyer et al. [12], and two VGII clone isolates reported in the Vancouver outbreak (strain R265 of ST20 represented the major
clone and strain R272 of ST7 represented the minor clone) [43].

Table 3
Antifungal susceptibilities for Cryptococcus species collected in this study

Cryptococcus species Fluconazole Voriconazole Itraconazole Posaconazole Amphotericin B 5-Flucytosine

C. neoformans var. grubii (n ¼ 303)
range 0.5e64 0.008e0.5 0.015e0.5 0.008e0.5 0.25e1 0.06e16
GM 4.28 0.034 0.057 0.084 0.60 3.42
MIC50 4 0.03 0.06 0.06 0.5 4
MIC90 8 0.12 0.12 0.25 1 8
WT (%) 92.4 98.3 99.0 97.7 100 98.7
Non-WT (%) 7.6 1.7 1.0 2.3 0 1.3

C. neoformans var. neoformans (n ¼ 2)
range 2 0.015 0.03e0.06 0.03e0.06 0.5e1 0.5e4
WT (%) 100 100 100 100 100 100
Non-WT (%) 0 0 0 0 0 0

C. gattii (n ¼ 7)
range 1e16 0.008e0.12 0.015e0.25 0.03e0.25 0.5 0.5e1
GM 4 0.033 0.055 0.09 0.5 0.61
WT (%) 85.7 100 100 100 100 100
Non-WT (%) 14.3 0 0 0 0 0

GM, geometric mean; MIC, minimum inhibitory concentration; WT, wild-type; non-WT, non-wild-type.
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To date, ITS sequencing remains the most often used reference
standard method for identification of most fungi species [17].
Within the C. neoformans species complex, ITS sequencing is also
sufficiently discriminatory to not only distinguish between
C. neoformans and C. gattii, but between the two varieties of
C. neoformans [4]. Moreover, ITS sequencing can also subtype the
C. neoformans species complex, particularly C. gattii, and ITS types
correlate with other genotyping methods, although with lower
discriminatory power [4,12].

Indeed, in the present study, by ITS sequencing, the majority
(97.1%) of cryptococcal isolates were C. neoformans var. grubii (ITS
type 1), consistent with previous studies on the species distribution
of C. neoformans species complex isolates in China (84%e99%)
[13,15,16,23,24]. Similar species and variety distributions of clinical
Cryptococcus isolates are also observed elsewhere in East Asia and
Africa [2,25e27]. It has been reported that cryptococcosis is more
severe in patients infected with C. neoformans serotype A (ITS type
1) comparedwith those infected with C. neoformans serotype D (ITS
type 2) or AD hybrid [28,29]; only two isolates (0.6% of 312 studied
isolates) were ITS type 2, highlighting the importance of genotyp-
ing at the laboratory level. Infections caused by C. neoformans var.
neoformans and the serotype AD hybrid were also rare in previous
Chinese studies [2,13] in contrast with studies from Europe (>25%
overall) [20,30]. In one French study, host factors including corti-
costeroid receipt may contribute to the apparent higher risk of
being infected by C. neoformans serotype D (C. neoformans var.
neoformans) [31]; however, the present study was not designed to
capture these variables.

In our study, the predominance of a single ITS type of
C. neoformans and the relative low genetic diversity was further
explored by MLST analysis. We identified 12 MLST STs among 303
C. neoformans var. grubii isolates, which is in general agreement
with previous findings that the Asian C. neoformans var. grubii
population has lower diversity than the African, American and



Fig. 4. Trends of susceptibility, including wild-type (WT) and non-wild-type (non-WT) rates, geometric mean MICs, MIC50 and MIC90 values of 303 Cryptococcus neoformans var.
grubii isolates to six antifungal agents over 5 years (from August 2009 to July 2014).
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European populations [27]. Further, we found that C. neoformans
ST5 was the predominant ST (272/305, 89.2%) in C. neoformans
isolates, followed by ST31 (19/305, 6.2%). Similar C. neoformans ST
distributions were also observed by Dou et al. (ST5 accounted for
94.9% (75/79) isolates) [13] and Wu et al. (ST5 82.9% (34/41), ST31
7.3% (3/41)) [23] in previous studies in China. Moreover, in the
previous study by Dou et al., it was reported that among 22 HIV-
positive and 43 HIV-negative C. neoformans-infected patients in
China, 86.4% (19/22) and 97.7% (42/43) patients, respectively, were
infected by C. neoformans ST5 [13]. Of note, C. neoformans ST5 has
been the most common ST in all East Asian countries where
epidemiology datawere available, including China, Japan and South
Korea [13,32e34]. However, in Thailand, ST4 and ST6 have been
found to be the major MLST types, while ST93 is dominant in India
and Indonesia [27,32].

In the present study, recovery of C. gattii remains uncommon
(2.2% of isolates), contrasting with the epidemiology in regions
endemic for C. gattii such as Australia and Papua New Guinea (64%e
90%) [2] and, in the outbreak setting in North America [35,36]. In
China, C. gattii cryptococcosis has been reported only relatively
recently, mostly from patients living in subtropical and tropical
regions [16,24], as were six of seven of our patients. That isolates
from China may be distantly related from strains causing the out-
breaks of infection [35,36] is supported by phylogenetic analysis of
the VGII strain recovered herein. Xue et al. [16] stated that if more
laboratories undertook MLST analysis, more cases of C. gattiiwould
be diagnosed. However, of 312 infections in our study, MLST and ITS
sequencing only identified seven cases, supporting the notion that
C. gattii is uncommon in our region.

The epidemiology of Cryptococcus species is related to their
ecology [24,37,38]. Cryptococcus neoformans has been isolated from
soil, plant and animal samples, of which pigeon droppings have
been found to be one of the more important reservoirs [38,39]. All
ecological surveys in China, including those in avian habitats, have
showed the predominance of C. neoformans var. grubii (serotype A)
[24,38,39]. In comparison, an important ecological niche of C. gattii
is eucalypt material. Eucalypt trees, including Eucalyptus camaldu-
lensis, are also grown in large areas of China yet a previous survey
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did not recover C. gattii from E. camaldulensis samples [38]; it is
possible that both adaptation of the immediate eucalypt environ-
ment, and of the fungus to local climatic conditions may have
affected likelihood of recovery of C. gattii [24].

During 5 years, there were no significant trends for changes in
MIC50, MIC90 and geometric mean of MIC values for Cryptococcus to
any of six antifungal agents tested. However, in the fourth sur-
veillance year, there was a significant increase in the proportion of
fluconazole non-WT phenotype isolates in C. neoformans var. grubii
(17/71 isolates, 23.9%) compared with the first 3 years (0%e2.1%, p
<0.001). Moreover, five isolates C. neoformans var. grubii isolates in
the fourth year exhibited fluconazole MIC of �32 mg/L, all of which
also had decreased susceptibly to voriconazole, itraconazole and
posaconazole and belonged to the common clonal C. neoformans
ST5. These five isolates were isolated from three different hospitals
and were not clustered geographically. Before the present study,
fluconazole MICs of �32 mg/L had not been reported in China, and
their occurrence also appears to be rare worldwide [40e42].
However, as our review of the patients' medical records showed,
only 36.4% patients infected by fluconazole non-WT C. neoformans
isolates had previously received fluconazole treatment. Therefore,
the proportional rise in strainswith higher fluconazoleMICs cannot
be entirely attributed to the selective pressure during antifungal
treatment. Future surveillance of both laboratory- and clinic-based
data is warranted.

In conclusion, the present study provides useful data on the
epidemiology, genetic diversity and antifungal susceptibility of
C. neoformans species complex. Cryptococcus neoformans var. grubii
was the predominant species, and ST5 is the commonest MLST
type. Although overall antifungal susceptibility remained stable
over the 5 years, increasing rates of fluconazole non-WT isolates
were seen, especially among C. neoformans ST5 isolates.
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